Motivate and Select - Markets and the Form of Compensation

Radoslava Nikolova

This version: August 2007

Abstract

The paper provides a rationale for the simultaneous use by an employer of termination contracts and bonus payments based on some observable but non verifiable measure of performance. Bonus payments are credible since the continuation of the employment relationship allows the principal to earn a rent. In a setting with unemployment, this could be the case if the employee’s performance signals that his productivity exceeds the average productivity of unemployed workers by a sufficient amount. Thus bonus payments can be used to motivate a worker to perform difficult tasks, while termination contract motivates them performing easy ones. The model also makes predictions about the impact of labor market characteristics, employees’ heterogeneity and exogenous turnover, on the optimal incentive mix.

Keywords: Relational contracts, Efficiency Wage, Bonus, Ex post selection

JEL classification: D82, J31, J41
1 Introduction

Performance-based pay is not the only way to motivate employees, as could be suggested by the traditional principal-agent approach. Indeed, in addition of piece rates, employers use a variety of other economic incentives, such as profit sharing, firing, promotion or bonuses based on informal agreements\(^1\). The use of performance-based pay is limited by the difficulty of measuring individual performance in an objective way. Indeed, in many instances, the available performance measures may be observable for the contracting agents, but too hard to verify by a third party. Yet this information is still useful to motivate employees since informal agreements can be tied on it. Such “relational contracts” are not enforced by a court but by the potential loss of cooperation between the contracting parties. The theory based on “relational incentive contracts” provides a useful understanding of the existence of some of the incentive tools mentioned above.

The early literature on relational contracts focuses on frameworks with symmetric information (see Shapiro and Stiglitz (1984) and Bull (1987) among others). MacLeod and Malcomson (1989) propose the most complete treatment of the problem. They prove that provided there is a sufficient rent from employment, either performance-based bonus (workers who perform satisfactory are paid an end of period bonus) or an efficiency wage (high fixed wage combined with a threat of dismissal) could be sustained in equilibrium. The rent corresponds to the surplus\(^2\) generated by the continuation of the employment relationship. If the latter is interrupted each party receives an exogenously given outside opportunity. MacLeod and Malcomson (1998) go further and stress the importance of labor market conditions on the choice between efficiency wage and bonus. When agents are homogeneous in skills and there is unemployment, there is no rent for a principal to continue the employment relationship. The principal has the possibility to replace an employee with an unemployed agent at no cost, since agents are substitutes. Then, the ef-

\(^1\)MacLeod and Parent (1997) analyze different incentive schemes used in the US. Hayes and Shaefer (1997) provide evidence for the use of subjective performance measures when boards of directors decide the salary and bonus of chief executives. Cappelli and Chauvin (1991) provide evidence in favor of the use of efficiency wages as an instrument to motivate agents to work.

\(^2\)Since both the principal and employees are risk neutral, the reward is a pure transfer.
ficiency wage is the only way to motivate employees. Conversely, when employees are in short supply, vacancies cannot be immediately filled, which creates a rent from keeping an agent. Then a performance-based bonus is credible. MacLeod and Malcomson (1998) show if the cost of unoccupied vacations is not too high, then an equilibrium with full employment and bonus could emerge.

However, in real world contracts different incentive tools may coexist\(^3\). Nevertheless, there are few theoretical explanations\(^4\) for this coexistence. In this paper we propose a rationale for the simultaneous use of termination contract (fixed wage and minimum performance standard to be achieved in order to keep occupation) and bonus when information about employee’s production is unverifiable. We examine this issue in a setting with heterogeneous in unobservable ability agents and endogenous, depending on labor market conditions, outside opportunities.

Levin (2003) characterizes the optimal relational contract with hidden information. Since the information asymmetry parameter changes from period to period, his focus is on the restrictions on revelation due to the self-enforcing character of the agreement. In our model, agents are privately informed about their ability which is the same over time. Under type persistence, revelation is a costly strategy for the principal. Indeed, when performance is not verifiable a principal can end the contract in any period. Then an agent is reluctant to reveal his information since it allows the employer to reap his surplus. In the model, we explicitly set aside \textit{ex ante} screening and focus on the effects of \textit{ex post} selection\(^5\) on the optimal relational contract.

We build our analysis in a framework with a continuum of firm owners proposing homogeneous positions. A job corresponds to the set of tasks an employee is supposed to perform\(^6\). The task an employee receives in a given period may be more or less difficult. Since the principal observes the difficulty at the end of the period,

\(^3\)See for example Baker, Gibbs and Holmström (1994) for a study of the wage policy of a firm.

\(^4\)Baker, Gibbons and Murphy (1994) show that when a principal has available both verifiable and unverifiable performance measure, it can be in his interest to use both measures thus proposing a formal performance-based pay and an informal bonus.

\(^5\)At the end of a period a principal only keeps agents that have attained the performance standard set in the termination contract.

\(^6\)Our production functions is inspired by the one presented in Garicano (2000), firm’s production corresponds to the number of successfully performed problems. The number of problems a firm can solve at each period is limited by its employees’ competence and time constraints.
succeeding a task is a signal about the agent’s ability. The firm owner’s problem is to motivate agents to perform the largest possible set of tasks. If employees are in short supply the equilibrium contract is still a performance-based bonus. Hence we focus on situations with unemployment. To give a flavor of the analysis consider that employees have larger average ability than unemployed.

When agents are heterogeneous, there could be a rent for the principal from keeping a successful insider. Indeed, solving a hard task signals high productivity, that may exceed the productivity of the average unemployed agent. Since the gap between the successful employee and the average unemployed should be sufficiently high, a necessary condition for the bonus to be credible, is high heterogeneity in the initial distribution of abilities. Hence, an end of period bonus can be credibly used to motivate agents to perform tasks that reveal their high productivity. Since its use limits to difficult tasks, it can be complemented by a termination contract that guarantees incentives for performing easy tasks. We show that a necessary condition for the simultaneous use of bonus and termination contract is that the expected productivity of insiders is sufficiently larger than the expected productivity of unemployed agents.

If the initial distribution of abilities is not sufficiently heterogeneous, then the rent from keeping an employee is too low. The bonus can not be credibly used and incentives are guaranteed only with an efficiency wage contract. However we show that the set of tasks for which credible incentives are guaranteed is constrained, in the sense that there are tasks for which the firing rule is not credible. Since employees have larger expected productivity than unemployed agents, an insider under-performing a difficult task, could still be more productive than an outsider. The principal prefers to keep the agent rather than to fire him, which destroys the latter’s motivation to perform difficult tasks.

To give the intuition of our results we considered above that insiders have larger average ability than unemployed agents. In the model this is endogenously obtained and is due to ex post selection by the principal. When a firm owner proposes a termination contract he fires under-performing (less skillful) agents over time. Thus

\footnote{Hereafter we explain that this is an endogenous property of our model.}
the stationary market equilibrium is characterized by two distributions, inside the firm and on the labor market. They satisfy the property we considered above, namely the average ability of insiders is larger than the one of outsiders. The gap between distributions affects the form of the contract and depends on labor market conditions. For example, a lower exogenous turnover raises the gap of average ability between employed and unemployed agents, thus facilitates the use of the bonus for a larger set of tasks.

The rest of the paper is organized as follows. Section 2 describes the framework. In Section 3 we present the incentive compatible efficiency wage and bonus contract. In Section 4 we discuss the self-enforceability constraints. In Section 5 we present our main findings. Then we conclude. All proofs are in the Appendix.

2 Framework

Economy We consider an economy composed of a continuum of measure one of firm owners (principals, employers) and a continuum of measure N of potential employees (agents). All parties are endowed with some ability θ. Firm owners are homogeneous and their ability is normalized to 1. Employees are heterogeneous and θ is agent’s private information. Let $S(\cdot)$ be the commonly known distribution of workers’ ability, $\theta \in [\underline{\theta}, \overline{\theta}]$. We assume that even the most able worker has less ability than a firm owner $^8 (1 > \overline{\theta} > \underline{\theta} \geq 0)$.

An agent is either employed or unemployed at any point in time. The utility of an employee from exerting effort in period t writes as $(W_t - c)$, where W_t is the reward function and c is the effort cost. Any unemployed agent receives an exogenously given unemployment benefit of z. An employer-employee match can be interrupted with probability $(1 - \alpha)$ for exogenous reasons. This exogenous turnover rate is the same whatever agent’s ability. It causes an employee to enter the unemployment pool.

All parties are infinitely lived and discount the future at a common rate δ.

8We set aside the endogenous decision to become a firm owner or to remain an employee. However, we consider that only the most able agents become firm owners.
Production Firm’s production corresponds to the number of successfully performed tasks (problems). They are equally valuable to solve and their price is normalized to one. However, some of them are more difficult than others. The complexity x of a particular task is \textit{ex ante} unknown, but it is drawn from a commonly known distribution. Dealing with a task requires time, succeeding it requires ability and effort. Each agent in the firm has one unit of time by period and spends it completely in dealing with one problem. An employee θ can solve a problem, by expending some effort, only if $x \leq \theta$. If $x > \theta$, he cannot solve it. The effort cost function for an agent θ writes:

$$c(x, \theta) = \begin{cases}
 c & \text{if } x \leq \theta \\
 +\infty & \text{if } x > \theta
\end{cases}$$

Since time is limited, a principal hires employees and delegates them the solution of easy tasks. Thus he spends his time in dealing with problems, that employees are unable to solve. Tasks arrive at the workers’ level and it is assumed that any task received by the organization should be solved\(^9\). Then the number of employees a principal hires and thus the number of problems the organization deals with in each period, is given by the following time constraint:

$$n_t T_t = 1$$

where n_t is the number of employees, and T_t is the proportion of problems, that employees transmit to the principal. T_t is a function of employees’ ability and the principal’s productivity requirements (\textit{i.e.} the set of problems for which he motivates agents to work), it is determined in section 5.1.

For the rest of the paper we make the following normalizations. First, problems’ complexity is uniformly distributed on the support $[0, 1]$. Hence, θ designs the proportion of problems an agent is able to solve. Second, a principal solves problems without cost\(^{10}\).

\(^9\)The production function is in the spirit of Garicano (2000). Here production is organized in a two layer knowledge based hierarchy. Each employee receives a problem and solves it if able and supposed to. If not, he transmits it to the principal.

\(^{10}\)Thus the instantaneous profit of a firm owner that works alone is equal to 1. Indeed, he deals
Output is produced whenever either workers or the firm owner are able to solve a problem, thus the expected output in period t is $y_t = n_t 1$, and a firm owner’s expected profit11 in period t writes as $\Pi_t = n_t(1 - E[W_t])$.

The employer-employee relationship. Some features of a contract are clearly defined, measurable by a third party, thus enforceable. Others are observable inside the firm, but not measurable in a way that could be verified in court. We assume that the difficulty of a given task and whether it has been succeeded or not is not verifiable, thus a legally enforceable contract cannot be written on it. However, it is observed by the employee dealing with the task and the employer. So they can agree on a relational contract, enforced by the possibility of future actions for each of them.

1. At the beginning of each period a firm, with vacant occupations, is matched with agents from the unemployment pool.

2. The principal proposes a contract C to the agents. If the offer is rejected, the agent returns to the unemployment pool and the vacancy remains unoccupied. The contract specifies the reward W_t and implicit12 performance requirement(s). The reward consists of a fixed wage w_t that the principal pays whatever agent’s output and a bonus b_t contingent on employee’s performance. The fixed wage is verifiable: a principal cannot renege on its payment. The bonus is paid at the end of a period. Since it is contingent on unverifiable performance, it cannot be enforced by a court.

3. A worker who accepts the contract receives a task, and decides to solve it (if able) or not.

4. The principal observes the difficulty of each problem, which employee received it and whether it was solved or not. Then he pays or not the bonus. At the

11Our results are not related to this specification of firm’s production function.

12Since the performance is not verifiable, the principal cannot commit on explicit (i.e. enforceable by a third party) performance requirements.
end of the period the worker and the firm decide, whether to stay matched for the next period. Exogenous separations occur.

Assumption 1. *A principal proposes the same contract to any employee.*

There are two agency problems on the employees’ side: moral hazard as effort is not observable, and adverse selection since the agent’s type is private information. With Assumption 1 we rule out *ex ante* screening and focus on the moral hazard problem. This assumption simplifies the analysis without imposing, in our view, strong restrictions on it. Since contracts contingent on performance are not enforceable, *ex ante* selection is costly for a firm owner. The intuition is that once an agent revealed his type, the principal has the possibility to fire him if he expects a larger profit from an agent of the unemployment pool. Thus to obtain revelation, the menu of contracts proposed by the principal should be such that he gets the same expected profit from any agent whatever his type. These additional constraints increase importantly the cost of screening for the principal.\(^{13}\)

Assumption 2. *Labor market is anonymous.*

The reasons why a particular employer-employee match came to end are not observed by any party on the labor market, neither employers, nor employees. We rule out the possibility for firm owners as well as for employees to build external reputation.\(^{14}\)

Assumption 3. *Employees are anonymous in the firm.*

The decision to keep or fire an employee is only based on his performance in the current period. Said differently, a principal does not have the history of employee’s previous performance, nor he knows the number of periods the agent spent in the firm. This restriction allows us to focus on the impact of *ex post* selection on the optimal relational contract. However the assumption is not innocuous and we propose a detailed discussion of its implications in section 6.

\(^{13}\)However, here pooling is assumed since this informal analysis is not complete. Thus we cannot claim that revelation is obviously sub-optimal. For more complete discussion about the optimal revelation contract under adverse selection without commitment we refer the reader to Laffont and Tirole (1993, pp. 437-460).

\(^{14}\)This assumption is in the line of MacLeod and Malcomson (1998).
Thus the principal proposes the same contract to any employee (assumption 1), and its terms only depend on agent’s performance in the current period (assumption 3).

In what follows we begin by separately characterize the incentive compatible termination contract and performance-based bonus. We show that if the principal could write enforceable contracts, he would propose a bonus to motivate agents. Then we present self-enforceability conditions, and discuss the rationale for the simultaneous use of termination contract and bonus.

3 Incentive compatibility

Let $V_t(\theta)$ (resp. $V_U^U(\theta)$) represent the expected future utility of an employee (resp. unemployed) with type θ. Our analysis focuses on the steady state, thus we drop the t index.

3.1 Termination contract

Under a termination contract the wage paid to an employee is independent of performance. However at the end of the period the employer can terminate the contract if performance is unsatisfactory. Thus a termination contract is specified by a wage-performance pair (w, x). Where w is the fixed wage and x the performance standard to be achieved in order to keep the job\footnote{It is not in the principal’s interest to fire an agent which performance is satisfactory. Since the expected productivity of an employee is increasing in the difficulty of the transmitted problem, if the principal fires an agent unable to solve a problem $\bar{x} - \epsilon$, then it is in his interest to fire any agent who fails to solve a problem $x < \bar{x} - \epsilon$.}.

In a setting with heterogeneous agents, there are two potential reasons for an employee to be fired: shirking and lack of performance. Since unsuccessful agents are fired at each period, the choice of performance standard allows \textit{ex post} selection. We first present the incentive compatible fixed wage, then we discuss the selection effect of the associated performance standard.
The incentive compatibility of a termination contract. In each period an employee with ability $\theta < x$, is in one of the following situations.

- He receives a problem of difficulty $x \leq \theta$. If he works, he solves it and keeps his job with probability α.
- He receives a problem of difficulty $x > \theta$:
 - if $x < x$ the agent is fired for not meeting the standard
 - if $x > x$ he keeps his job with probability α.

Then the inter-temporal expected utility of an employee with $\theta < x$ who exerts effort is:

$$V(\theta) = w - \theta c + \delta(1 - \alpha)V_U(\theta) + \delta\alpha[(1 - x + \theta)V(\theta) + (x - \theta)V_U(\theta)]$$

The expected utility of an agent with $\theta \geq x$ who exerts effort writes:

$$V(\theta) = w - xc + \delta(1 - \alpha)V_U(\theta) + \delta\alpha V(\theta)$$

An unemployed agent receives the unemployment compensation z. At the end of each period, there is an endogenous probability16 λ to find a new job and quit the unemployment pool. Since labor market is anonymous, this probability is the same for any unemployed agent, whatever his employment history. Thus λ is independent of θ. The inter-temporal expected utility of an unemployed agent is:

$$V_U(\theta) = z + \delta[\lambda V(\theta) + (1 - \lambda)V_U(\theta)]$$

For a wage to be incentive compatible, the agent’s value from working should be larger than his value from shirking. Thus an employee solves a problem only if:

$$w - c + \delta\alpha V(\theta) + \delta(1 - \alpha)V_U(\theta) \geq w + \delta V_U(\theta)$$

16It is determined in section 5.2.
\[
\Leftrightarrow V(\theta) - V_U(\theta) \geq \frac{c}{\alpha \delta}
\]

Since in our setting the cost of effort is independent of \(\theta \), and the probability to be re-employed is the same for any unemployed agent (anonymity), we have the following property.

Lemma 1. The incentive compatible wage does not depend on \(\theta \).

For a formal proof of the lemma, see Appendix 8.1. When the incentive compatibility constraint is binding (i.e. \(V(\theta) - V_U(\theta) = \frac{c}{\alpha \delta} \)) and since the re-employment probability is independent of agent’s ability level, it is easy to see that the inter-temporal expected utility of an unemployed agent\(^{17}\) does not depend on \(\theta \). Let us now turn to \(V(\theta) \). A larger \(\theta \) (for \(\theta < \bar{x} \)) corresponds to a higher probability to keep a job (the associated gain is \(\delta \alpha (V(\theta) - V_U(\theta)) \)), but also a higher probability to spend the effort cost \(c \). The marginal gain equals the marginal cost. Hence the inter-temporal expected utility of an employee is also independent of \(\theta \).

Given these results we simplify the notation as follows, \(V \) instead of \(V(\theta) \) and \(V_U \) instead of \(V_U(\theta) \).

Thus the incentive compatible fixed wage\(^{18}\) is:

\[
w = cx + \frac{c(1 - \delta \alpha)}{\delta \alpha} + (1 - \delta)V_U
\]

Expanding the set of tasks delegated to workers raises the probability that an agent spends effort cost (or the probability to be fired for an agent with type \(\theta < \bar{x} \)), which reduces \(V \) and makes the utility stream when working less attractive for the agent. Thus a larger performance standard should be combined with a higher wage in order to motivate workers.

The selection effect of a performance standard. By choosing a performance standard a principal alters the characteristics of insiders’ distribution. Indeed, the choice of \(\bar{x} \) sets the proportion of agents who will be fired in each period and re-
placed by outsiders. Let $F(\theta)$ be the stationary cumulative distribution function of employees’ ability. The agents fired in each period are those unable to solve a problem below the performance standard: $v = \int_{\theta}^{x} F(\theta) d\theta = \int_{\theta}^{x} (x - \theta) f(\theta) d\theta$. Thus for given\(^{19}\) distribution of outsiders $Q(\theta)$, the steady state distribution of insiders $F(\theta)$ is determined by the following expression.

\begin{equation}
Q(\theta) = \begin{cases}
(1 - \alpha)F(\theta) + \alpha \int_{\theta}^{\bar{\theta}} (x - u) f(u) du & \text{if } \theta \in [\theta; x] \\
(1 - \alpha)F(\theta) + \alpha v & \text{if } \theta \in [x; \bar{\theta}]
\end{cases}
\end{equation}

The steady state distribution of outsiders is composed of employees that quit their job for exogenous reasons, and employees that are fired because their lack of competence has been detected by the principal.

Lemma 2. Insiders’ distribution of ability dominates the outsiders’ distribution, in the sense of first order stochastic dominance.

3.2 Bonus

A contract is “pure bonus” when the principal motivates agents with a reward based on performance realization. In this case the fixed wage ensures agents’ participation (i.e. $V(\theta) \geq V_U(\theta)$).

The bonus b is paid to an agent conditionally on performing successfully a task. The contract satisfies the following constraints:

\begin{equation}
\begin{cases}
b - c + \alpha \delta V(\theta) + (1 - \alpha) \delta V_U(\theta) \geq \delta V_U(\theta) & (IC) \\
V(\theta) \geq V_U(\theta) & (IR)
\end{cases}
\end{equation}

As the principal’s profit is decreasing in agents’ reward, it is easy to see that he binds both constraints and we have $b = c$, and w such that\(^{20}\) $V(\theta) = V_U(\theta)$. If such a contract can be enforced, then each employee solves any task he is able to.

\(^{19}\)Each principal is “too small” to have an individual impact on market conditions, thus he takes the distribution of outsiders’ ability as given.

\(^{20}\)It is easy to show that w does not depend on θ, and $w = z$. Recall that z is the unemployment benefit.
Since in the case of termination contract the principal pays rents to the agents, the performance-based pay is the less expensive way to motivate employees. Thus if the principal could write enforceable contracts, he would choose a performance-based pay to provide incentives. However, since performance is not verifiable the employer-employee relationship is steered by a relational contract, and the bonus could only be used to motivate agents to perform a subset of difficult tasks (above some threshold value \bar{x}). In the next section we introduce the restrictions imposed on the contract space by the need for the agreement to be self-enforceable.

4 Self-enforceability

4.1 The Contract

The equilibrium self-enforceable contract when there is unemployment is $C^E = (w, b, x, \bar{x})$, where w and b are respectively the fixed wage and the bonus, x is a minimum performance to be achieved in order to keep a job and \bar{x} defines the lower bound of the set of tasks for which the bonus is used. C^E has the following characteristics.

- For problems $x \geq \bar{x}$ incentives are provided with a performance-based bonus. As we already mentioned it in section 3, the bonus corresponds to the least costly way for the principal to motivate employees. It is in his interest to adopt this incentive scheme for the largest possible set of tasks. The problem is that the bonus cannot be self-enforced for tasks close to θ. Indeed, the principal pays the bonus only if there is a sufficient rent from continuing the employment relationship. The expected productivity of an agent performing θ equals the productivity expected from an outsider. There is no rent from keeping the agent. Then the principal cannot credibly promise the bonus for this task. The bonus is credible only if an agent performs a task above some threshold level $\bar{x} \in [\theta, \bar{\theta}]$.

- For problems $x \leq x$, incentives are provided with a termination contract.

Since the performance-based pay is self-enforceable only for a subset of tasks, the principal can use a termination contract in order to motivate agents to perform easy
tasks. An employee that fails to solve a problem \(x \leq x \) is fired.

- \(\bar{x} \geq x \)

In equilibrium the principal does not duplicate incentive schemes for a given task. To give the intuition for this, let us consider the contrary, \(\bar{x} < x \). There is a set of problems \(x \) for which the principal motivates agents with an efficiency wage contract. Moreover the principal pays the bonus to successful agents for the tasks \((\bar{x} - x) \). This raises the principal’s cost without any gain, since the set of solved problems does not change. Thus the firm owner is strictly better off by increasing \(\bar{x} \).

- If an agent fails to perform a task \(x \geq \bar{x} \), he keeps his job.

Consider a situation in which termination contract and bonus are simultaneously used by the principal, and the incentive compatible efficiency wage is given by (2). If the principal fires agents who fail to solve tasks \(x \geq \bar{x} \), he destroys the incentives provided with the termination contract to any agent with ability \(\theta < \bar{x} \). Indeed, the probability that those employees are fired for lack of performance increases, thus their rent from employment is no more sufficient to guarantee effort provision. A more detailed discussion of this point can be found in Appendix 8.7. Note that this condition is only relevant if the contract proposed by the principal is a mix of bonus and efficiency wage.

\[\begin{array}{c|c|c}
\theta & \text{Unsuccessful agents are fired.} & \bar{x} \\
\hline
\text{Successful agents keep their occupation.} & x & \text{Successful agents are paid a bonus.} \\
\text{Unsuccessful agents keep their occupation.} & \bar{x} & \theta
\end{array} \]

Figure 2.1: The self-enforceable contract \(C^E \)

In the rest of the section we analyze the self-enforceability constraints for the terms of the contract.
4.2 Self-enforceability of the minimum performance standard

The problem of self-enforceability for a termination contract does not concern the fixed wage (a principal can credibly commit on its amount and payment) but the threat to fire an unsuccessful agent. Suppose the performance standard is set too high. Then, as employees are selected, the profit expected from an insider who has not solved a problem below the performance standard could still be larger than the profit expected from an outsider. In such a case a principal cannot credibly commit to fire the unsuccessful employee. Agents anticipate it and do not solve the problem.

The rule to fire any agent performing below the performance standard is self-enforcing, if the profit expected from an insider that fails to solve \(x \) \((\pi_{\text{in}}(\theta \leq x))\) is lower than the profit expected from an unemployed agent \((\pi_{\text{out}})\).

\[
\pi_{\text{in}}(\theta \leq x) \leq \pi_{\text{out}}
\]

where

\[
\pi_{\text{in}}(\theta \leq x) = x - \int_{\theta}^{x} \frac{(x - \theta)f(\theta)}{F(x)} d\theta - w(x) + (1 - \alpha)\delta\pi_{\text{out}} + \\
\alpha\delta(1 - \int_{\theta}^{x} \frac{(x - \theta)f(\theta)}{F(x)} d\theta)\pi_{\text{in}}(\theta \leq x) + \int_{\theta}^{x} \frac{(x - \theta)f(\theta)}{F(x)} d\theta\pi_{\text{out}}
\]

\[
\pi_{\text{out}} = x - \int_{\theta}^{x} (x - \theta)q(\theta)d\theta + \int_{\theta}^{\bar{x}} (\theta - \bar{x})q(\theta)(1 - b) - w(x) + \delta\pi_{\text{out}}
\]

Since for a given performance standard, the conditional expected productivity of an agent is increasing in the difficulty of the problem that has been transmitted, if the threat of firing is credible for an agent transmitting \(x \), it will also be credible for an employee who fails to solve \(x < x \).

After some transformations the self-enforceability condition (4) writes:

\[
-(x - \int_{\theta}^{x} \frac{\theta f(\theta)}{F(x)} d\theta) + Q(x)(x - \int_{\theta}^{x} \frac{\theta q(\theta)}{Q(x)} d\theta) - (1 - b)(1 - Q(x))\left(\frac{\int_{\theta}^{\bar{x}} \theta q(\theta)d\theta}{1 - Q(x)} - \bar{x}\right) \leq 0
\]

In order to simplify the exposition, we adopt the following notation for the rest of the paper: \(l_{\text{in}} = (x - \int_{\theta}^{x} \frac{\theta f(\theta)}{F(x)} d\theta) \), \(l_{\text{out}} = (x - \int_{\theta}^{x} \frac{\theta q(\theta)}{Q(x)} d\theta) \) and
\[h = \left(\int_{\bar{x}}^{\bar{x}} \theta q(\theta) d\theta \right) \left(\frac{1 - Q(\bar{x})}{1 - F(\bar{x})} \right) - \bar{x} \text{ which is equal to } \left(\int_{\bar{x}}^{\bar{x}} \theta f(\theta) d\theta \right) \left(\frac{1 - Q(\bar{x})}{1 - F(\bar{x})} \right) - \bar{x} \]

With the new notation, the constraint (4) writes:

\[-l_{in} + Q(\bar{x}) l_{out} - (1 - b)(1 - Q(\bar{x})) h \leq 0 \]

Note that if there is no difference between insiders’ and outsiders’ distribution (i.e. \(F(\theta) = Q(\theta) \) for any \(\theta \) and \(l_{in} = l_{out} = l \), the constraint is

\[-l(1 - Q(\bar{x})) - (1 - b)(1 - Q(\bar{x})) h \leq 0 \text{, which is always satisfied.} \]

Since insiders are selected and have a larger expected productivity than outsiders, the threat to fire an agent may not be credible for some tasks. It is easy to see that, for example, a performance standard \(\bar{x} = \bar{\theta} \) cannot be self-enforced. Indeed the constraint writes

\[\int_{\theta}^{\bar{\theta}} \theta f(\theta) d\theta - \int_{\theta}^{\bar{\theta}} \theta q(\theta) d\theta \leq 0. \]

According to Lemma 2 the latter inequality is never satisfied. Therefore the threat to fire the employee is not credible for this task, which destroys agents’ incentives to work on it.

4.3 Self-enforceability of the bonus

As a bonus cannot be enforced by a third party the principal should have the right incentives to pay it. There are two possibilities for a principal who reneges on paying the bonus. First, he can fire a successful agent and replace him by an outsider. Second, he can keep the agent without paying the bonus. In the latter case the employee continues to perform tasks for which motivation is guaranteed by the termination contract. Hence, the bonus can only be credible if the ongoing relationship with the employee provides a sufficient rent to the principal and if having employees who perform tasks for which incentives are guaranteed with the bonus is sufficiently valuable for him. We now successively analyze each of those situations.

The principal pays the bonus rather than fire the agent. A firm owner does not pay the bonus unless the expected future gains from employment exceed its value. For given \(\bar{x} \), the more difficult the problem solved by an agent, the higher

\[\int_{\theta}^{\bar{\theta}} \frac{\theta f(\theta)}{1 - F(\bar{x})} d\theta = \int_{\theta}^{\bar{\theta}} \frac{\theta q(\theta)(1 - \alpha + \alpha v)}{1 - \alpha} d\theta = \int_{\theta}^{\bar{\theta}} \frac{\theta q(\theta)}{1 - Q(\bar{x})} d\theta \]
his expected productivity. Thus if the principal pays the bonus when an agent solves a problem \bar{x}, he will obviously pay it when the problem solved by an employee is above \bar{x}. The self-enforceability constraint states that the expected profit from an insider who solved a problem \bar{x} ($\pi^{in}(\theta \geq \bar{x})$) should be sufficiently high in comparison with the profit expected from an outsider:

$$-b + \alpha \delta \pi^{in}(\theta \geq \bar{x}) \geq \alpha \delta \pi^{out}$$

where

$$\pi^{in}(\theta \geq \bar{x}) = \bar{x} + \int_{\bar{x}}^{\theta} \frac{(\theta - \bar{x})f(\theta)}{1 - F(\bar{x})} d\theta(1 - b) - w(\bar{x}) + (1 - \alpha)\delta \pi^{out} + \alpha \delta \pi^{in}(\theta \geq \bar{x})$$

The condition (6) becomes:

$$\frac{b(1 - \alpha \delta)}{\alpha \delta} - Q(\bar{x})(\bar{x} - \frac{\int_{\bar{x}}^{\theta} \theta q(\theta) d\theta}{Q(\bar{x})}) - Q(\bar{x})\left(\frac{\int_{\bar{x}}^{\theta} \theta q(\theta) d\theta}{1 - Q(\bar{x})} - \bar{x}\right)(1 - b) \leq 0$$

(7) $$\Leftrightarrow \frac{b(1 - \alpha \delta)}{\alpha \delta} - Q(\bar{x})l_{out} - (1 - b)Q(\bar{x})h \leq 0$$

This constraint illustrates why it is impossible to use the bonus to provide incentives to perform “easy” tasks. For the bonus to be credible, outsiders should not be close substitutes for an insider who succeeds a problem. If $\bar{x} = \bar{\theta} = \bar{\theta}$, this condition is never satisfied. For $\bar{x} = \bar{\theta}$ there is no selection, i.e. the distribution of insiders is the same as the distribution of outsiders. Thus the expected productivity of an insider who solves a problem close to $\bar{\theta}$ is the same as the expected productivity of an outsider. An agent from the unemployment pool is a perfect substitute for the insider. There is no rent from keeping the successful agent, so the principal cheats on paying the bonus.

The principal pays the bonus rather than renege but keep the agent As mentioned above, another possibility for a principal is to keep a successful agent...
without paying him the bonus. The following constraint prevents such situations:

\[-b + \alpha \delta \pi^\text{in}(\theta \geq \bar{x}) \geq \alpha \delta \pi^\text{in}_{\text{dev}}(\theta \geq \bar{x}) \]

where \(\pi^\text{in}_{\text{dev}}(\theta \geq \bar{x}) \) is the expected profit from an insider who solved a problem \(x = \bar{x} \) after principal’s deviation on the payment of the bonus. An employee who has been cheated once on the bonus believes\(^{22}\) that the principal will continue to cheat. Hence he stops solving problems for which motivation is guaranteed by the bonus. However, the employee still solves problems for which incentives are guaranteed with the termination contract\(^{23}\).

\[\pi^\text{in}_{\text{dev}}(\theta \geq \bar{x}) = \bar{x} - w(\bar{x}) + (1 - \alpha) \delta \pi^\text{out} + \alpha \delta \pi^\text{in}_{\text{dev}}(\theta \geq \bar{x}) \]

After simplifications (8) writes:

\[\frac{b(1 - \delta \alpha)}{\alpha \delta} - (1 - b) \left(\frac{\bar{x}}{\int_{\bar{x}}^{\theta} f(\theta) d\theta} - \bar{x} \right) \leq 0 \]

\[(9) \quad \Leftrightarrow \frac{b(1 - \alpha \delta)}{\alpha \delta} - (1 - b)h \leq 0 \]

Note that when \(\bar{x} \) is close to \(\bar{\theta} \), then the expected gain from an employee able to solve these tasks is low, which makes more profitable principal’s deviation.

4.4 Self-enforceability of the mix of efficiency wage and bonus

Recall that in an equilibrium with joint use of termination contracts and a bonus the principal does not fire agents who transmit problems \(x > \bar{x} \). For this to be credible the profit expected from an insider who is unable of solving a problem \(\bar{x} \)

\(^{22}\)There are many patterns of believes consistent with equilibrium. We characterize the set of self-enforcing agreements using the most severe punishment.

\(^{23}\)It is in the employee’s interest to do so, as far as his expected utility when employed and performing tasks below the performance standard \(\bar{x} \), is larger than his expected utility if unemployed.
\((\pi^{\text{in}}(\theta \leq \bar{x}))\) must exceed the profit expected from an outsider:

\[
\pi^{\text{in}}(\theta \leq \bar{x}) \geq \pi^{\text{out}}
\]

where

\[
\pi^{\text{in}}(\theta \leq \bar{x}) = x - \frac{\int_{\theta}^{\bar{x}} (x - \theta) f(\theta) d\theta}{F(\bar{x})} - w(x) + (1 - \alpha)\delta\pi^{\text{out}} + \\
\alpha \delta \left(1 - \frac{\int_{\theta}^{\bar{x}} (x - \theta) f(\theta) d\theta}{F(\bar{x})} \right) \pi^{\text{in}}(\theta \leq \bar{x}) + \frac{\int_{\theta}^{\bar{x}} (x - \theta) f(\theta) d\theta}{F(\bar{x})} \pi^{\text{out}}
\]

After simplifications the condition (10) becomes:

\[
\frac{F(x)}{F(\bar{x})} \left(x - \frac{\int_{\theta}^{\bar{x}} \theta f(\theta) d\theta}{F(x)} - Q(x) \left(x - \frac{\int_{\theta}^{\bar{x}} \theta q(\theta) d\theta}{Q(x)} \right) \right) + (1 - b)(1 - Q(\bar{x})) \left(\frac{\int_{\theta}^{\bar{x}} \theta q(\theta) d\theta}{1 - Q(\bar{x})} - \bar{x} \right) \leq 0
\]

(11) \(\Leftrightarrow \frac{F(x)}{F(\bar{x})} l_{\text{in}} - Q(x) l_{\text{out}} + (1 - b)(1 - Q(\bar{x})) h \leq 0\)

Without the selection effect on insiders distribution \((l_{\text{in}} = l_{\text{out}} = \bar{l} \text{ and } F(\theta) = Q(\theta))\), the left hand side of the constraint writes as \(\left(l F(x) \left(\frac{1}{F(x)} - 1 \right) + (1 - b)(1 - Q(\bar{x})) \right)\), which is always positive, and the constraint is never satisfied.

Lemma 3. A principal can use simultaneously a termination contract and bonus to motivate an employee to work, only if the expected productivity of the employee is sufficiently larger than the expected productivity of an agent from the unemployment pool.

5 Equilibrium

5.1 Principal’s program

A principal is “too small” to have an impact on market conditions. Thus each firm owner maximizes his profit for a given outside option \((V_{\text{U}})\) and outsiders’ distribution \((Q(\theta))\). Then workers’ reservation utility and insiders’ and outsiders’ distributions are determined consistently in market equilibrium.
The proportion of transmitted problems \(T \) under the contract \(C^E \) is:

\[
T = 1 - \bar{x} + \int_{\bar{x}}^{x} F(\theta)d\theta - \int_{\bar{x}}^{\theta} (1 - F(\theta))d\theta.
\]

A firm owner maximizes his profit:

\[
\max_{x, \bar{x}} \Pi = \frac{1}{T}(1 - w - b \int_{\bar{x}}^{\theta} (1 - F(\theta))d\theta)
\]

with

\[
\begin{cases}
 b = c \\
 w = c\bar{x} + \frac{c(1 - \alpha \delta)}{\alpha \delta} + (1 - \delta)V_U
\end{cases}
\]

and under the self-enforceability (5), (7), (9), (11) constraints.

5.2 The labor market

Employees’ outside option. The equilibrium re-employment probability guarantees the equilibrium of flows between the firm and the labor market. The steady state flow into the unemployment pool is \(n(1 - \alpha + \alpha v) \). Some agents quit for exogenous reasons \((1 - \alpha) \), others are fired for lack of performance \(\alpha v \). The flow out of the unemployment pool is \(\lambda(N - n) \). A proportion \(\lambda \) of the \((N - n) \) unemployed agents finds a job. Thus we obtain: \(\lambda = \frac{1 - U}{U}(1 - \alpha + \alpha v) \), where \(U = \frac{N - n}{N} \) corresponds to the unemployment rate.

Abilities distributions. As discussed above, the initial distribution of ability is split into two stationary distributions - inside the firm and on the labor market. In equilibrium the following condition holds:

\[
(12) \quad S(\theta) = (1 - U)F(\theta) + UQ(\theta)
\]

The gap between the insiders’ and outsiders’ productivity plays an important role to characterize the self-enforceable relational contract. As we already explained it this gap is endogenous, and from equation (12) we notice that it depends on labor market conditions.

In what follows, we discuss the extend to which agents’ heterogeneity affects self-
enforceability of termination contracts and performance-based bonus. Furthermore
we analyze the extend to which the trade-off between those tools is affected by labor
market conditions.

5.3 Pure termination contract

There exist values of the parameters for which a performance-based bonus cannot be
self-enforced. Let us denote by m the mean and by σ^2 the variance that characterize
the initial distribution of abilities.

Proposition 1. If $c \geq \min\{\frac{\alpha \delta m}{1 - \alpha \delta (1 - m)}; \frac{\alpha \delta}{1 - \alpha \delta} \left(\bar{\theta} - m + \frac{\alpha \sigma^2}{1 - \alpha + \alpha (\bar{\theta} - m)}\right)\}$
then the bonus can not be self-enforced.

We note that it is impossible to commit on a bonus if the expected surplus from
paying it (agent’s expected production) is not sufficiently high. More interestingly,
the bonus cannot be implemented if the initial distribution of employees is not
sufficiently heterogeneous. Indeed a principal is eager to pay the bonus only if the
surplus of continuing the relationship with the successful employee is high enough.
To say it differently, by solving a difficult task a worker signals that he is more able
than the average unemployed agent. This is sufficiently valuable to guarantee the
payment of the bonus only if the distribution is not too homogeneous\(^{24}\).

When Proposition 1 holds, the firm’s owner motivates employees with a pure ter-
mination contract. He maximizes his profit under the self-enforceability constraint
of \bar{x}:

$$-l_m + Q(\bar{x})l_{out} \leq 0$$

In this case the existence of heterogeneity limits the set of self-enforceable efficiency
wage contracts, in the sense that a principal cannot credibly commit to fire an
insider who fails to solve a difficult task. We show in Appendix 8.5 that there exists
some threshold level for \bar{x}, denoted by \hat{x}, such that the principal cannot motivate
employees to solve tasks $x > \hat{x}$. Since employees are in average more productive

\(^{24}\)To illustrate our purpose assume that initially ability is uniformly distributed on the support
$[m - \epsilon, m + \epsilon]$. Then the condition $\frac{\alpha \delta}{1 - \alpha \delta} \left(\bar{\theta} - m + \frac{\alpha \sigma^2}{1 - \alpha + \alpha (\bar{\theta} - m)}\right)$ writes as $\frac{\epsilon (1 - \alpha) + (4/3) \alpha \epsilon^2}{1 - \alpha + \alpha \epsilon}$. The latter only depends on ϵ and increases with its value.
than the unemployed, the principal cannot be too demanding with them. Clearly, this restriction on the credible performance requirements is due to the endogenous selection of insiders. The degree of selection depends on the performance standard, but also on labor market conditions, namely the unemployment rate and exogenous turnover.

A higher exogenous turnover raises the incentive cost of the efficiency wage contract. Indeed if agent’s probability to quit the firm whatever his performance is larger, it raises the wage the principal should pay to motivate the employee. Thus in a setting the principal is not constrained by the self-enforceability, a higher turnover leads to a decrease of the performance standard. In our setting a higher turnover may play in the opposite sense.

Proposition 2. A higher turnover (i.e. lower α) softens the self-enforceability constraint and thus increases \hat{x}.

A higher turnover reduces the degree of heterogeneity between the distribution of insiders and that of outsiders. First, when the proportion of agents who quit the firm for exogenous reasons is larger, insiders are less selected. The intuition is that among the employees who successfully performed the required tasks, larger proportion quits the firm and is replaced by unemployed agents. Second, in the unemployment pool, the proportion of unemployed for exogenous reasons (rather than for lack of performance) increases, which improves outsiders’ distribution. A lower gap in the expected productivity of insiders and outsiders expands the set of tasks for which the threat to fire an unsuccessful insider is credible.

5.4 Efficiency wage and bonus

In this section we discuss the characteristics of the incentive mix, when the principal uses both termination contract and performance-based bonus. Performing a difficult task signals high ability, and if outsiders are not close substitutes to insiders, the bonus payment may be credible. However the principal can use it to motivate effort only for a fraction of tasks, the more difficult ones. Thus it may be complemented by a termination contract, which motivates agents to perform easy tasks.
It is in the principal’s interest to use the bonus as a motivation tool for the largest possible set of tasks; he should choose the lower \bar{x}, compatible with the self-enforceability constraints. Hereafter we analyze which one of the following constraints is the most stringent, and thus determines the principal’s decision.

\[
\begin{align*}
-l_{in} + Q(\bar{x})l_{out} - (1 - c)(1 - Q(\bar{x}))h & \leq 0 \\
\frac{c(1 - \alpha \delta)}{\alpha \delta} - (1 - c)h - Q(\bar{x})l_{out} + (1 - c)(1 - Q(\bar{x}))h & \leq 0 \\
\frac{c(1 - \alpha \delta)}{\alpha \delta} - (1 - c)h & \leq 0 \\
F(\bar{x})l_{in} - Q(\bar{x})l_{out} + (1 - c)(1 - Q(\bar{x}))h & \leq 0
\end{align*}
\]

Constraint (11) guarantees that the expected productivity of an outsider does not exceed the expected productivity of an insider who is unable to solve \bar{x}. If this constraint is satisfied and if the surplus of tasks under bonus contract is sufficiently high to justify its payment (i.e. constraint (9) is satisfied), then it is never in the principal’s interest to fire a successful insider and replace him by an outsider. To say it differently, if the principal uses a mix of efficiency wage and performance-based bonus, constraint (7) never binds.

The constraint (9) rewrites (by using (12)) as:

\[
\frac{c(1 - \alpha \delta)}{\alpha \delta} - (1 - c)
\left(\int_{\bar{x}}^{\infty} \theta s(\theta) \frac{\theta s(\theta)}{1 - S(\theta)} d\theta - \bar{x}\right) \leq 0
\]

For a large set of initial ability distributions, the left hand side of the constraint is increasing\(^{25}\) in \bar{x} (i.e. larger \bar{x} makes the constraint more difficult to satisfy). When the bonus is used for a small set of tasks, then the expected gain from an agent able to solve these tasks is smaller, which makes more profitable principal’s deviation.

Conversely, the left hand side of (11) decreases with \bar{x}. So if there exists a solution for \bar{x} that satisfies both constraints, the principal chooses the lowest possible \bar{x}, constraint (11) obviously binds.

\(^{25}\)As shown by Bagnoli and Bergstrom (2005), a sufficient condition for $\left(\int_{\bar{x}}^{\infty} \theta s(\theta) \frac{\theta s(\theta)}{1 - S(\theta)} d\theta - \bar{x}\right)$ to be monotone decreasing in \bar{x} is that the density function $s(\theta)$ and the reliability function $\int_{\bar{x}}^{\infty} (1 - S(\theta)) d\theta$ are log-concave. For a list of the distributions that satisfy these conditions, we refer the reader to Bagnoli and Bergstrom (2005).
Finally, if the expected productivity of an outsider equals the expected productivity of an insider who is unable to solve \(\bar{x} \), it is obviously larger than the expected productivity of an insider who cannot solve \(x \) (since \(\bar{x} \geq x \)). So if (11) binds, (5) is satisfied.

The principal maximizes his profit, with respect to \(x \), and \(\bar{x} \) is given by the constraint:

\[
\frac{F(x)}{F(\bar{x})} l_m - Q(x) l_{out} + (1 - c)(1 - Q(\bar{x})) h = 0
\]

When the constraint is satisfied with equality, an increase of \(x \) raises \(\bar{x} \). Thus in equilibrium both incentive tools are substitutes. A more extensive use of the bonus reduces the set of tasks for which the principal motivates the agent through the efficiency wage.

Proposition 3. A lower turnover (i.e. high \(\alpha \)) expands the set of tasks for which the bonus is credible (i.e. \(\bar{x} \) decreases).

In markets with low turnover, the bonus can be more extensively used by the principal. There are two reasons for that. First, a lower turnover increases the probability of continuation of the relationship, thus increasing the cost of reneging on the agreement. Second, it expands the gap between insiders’ and outsiders’ productivity, which is the effect highlighted in Proposition 3. As already discussed in section 5.3, a lower turnover improves insiders’ distribution and worsens outsiders’ distribution, thus increasing the productivity gap between the average employee and unemployed agent, which in turn relaxes constraint (11) and reduces \(\bar{x} \). In fine the positive effect of lower turnover on the utilization of the bonus is twofold. It is used for a larger set of tasks, furthermore insiders are better selected, thus problems for which the bonus is paid are solved more often.

6 Discussion

This article provides some new elements in the understanding of incentive schemes used by managers. We derive conditions for the simultaneous use of termination contracts and bonus payments in order to motivate employees to work. We show
that this is possible only if there is a difference in the expected productivity of an employee and an unemployed agent. The gap in expected productivities of employees and unemployed, in our setting, can be driven by: either the impact of *ex post* selection on insiders’ and outsiders’ distributions or agent’s seniority. In the paper we focus on the first effect and set the second one aside (with assumption 3). Over time unsuccessful employees’ are fired and replaced, insiders’ and outsiders’ stationary distributions are endogenously obtained, which generates the difference in the expected productivity of employed and unemployed agents.

Let us now briefly discuss the potential effect of seniority. To expose our intuitions we assume that the pool of unemployed has the same characteristics over time (set aside the endogenous selection). An agent who has been in the firm for a long time has larger expected productivity than an unemployed one. The reason for that is related on the fact that an agent with longer career in the firm is one that succeeded successive tests, *i.e.* an employee that has not been fired for lack of performance. When an agent arrives in the firm the bonus cannot be credibly proposed since his expected productivity is the same as that of an unemployed. However with employee’s seniority bonus could be used to motivate the agent to perform some difficult tasks. The larger the number of periods the agent spends in the firm the larger the set of tasks for which the bonus can be credibly used. We hope that a more precise characterization of the optimal contract with seniority would be the subject of a future work. However we think that in a model that would take into account both the endogenous evolution of distributions of insiders and outsiders, and the effect of seniority, the findings of this paper would be still present.
7 References

8 Appendix

8.1 Proof of Lemma 1

The incentive compatibility constraint for the fixed wage of a termination contract writes:

\[V(\theta) - V_U(\theta) \geq \frac{c}{\alpha \delta} \]

For an agent with type \(\theta < \bar{x} \). The difference between the expected utility when employed and the expected utility when unemployed is

\[V(\theta) - V_U(\theta) = \frac{w - z - \theta c}{1 - \alpha \delta(1 - \bar{x} + \theta) + \lambda \delta} \]

Thus the incentive compatibility constraint corresponds to:

\[\frac{w - z - \theta c}{1 - \alpha \delta(1 - \bar{x} + \theta) + \lambda \delta} \geq \frac{c}{\alpha \delta} \Leftrightarrow w \geq \frac{c(1 - \alpha \delta)}{\alpha \delta} + c \bar{x} + z + \frac{c \lambda}{\alpha} \]

For an agent with type \(\theta \geq \bar{x} \). Now we have:

\[V(\theta) - V_U(\theta) = \frac{w - z - x c}{1 - \alpha \delta + \lambda \delta} \]

\[\frac{w - z - x c}{1 - \alpha \delta + \lambda \delta} \geq \frac{c}{\alpha \delta} \Leftrightarrow w \geq \frac{c(1 - \alpha \delta)}{\alpha \delta} + c x + z + \frac{c \lambda}{\alpha} \]

Thus the incentive compatible wage does not depend on \(\theta \).

8.2 Stationary distributions

The distribution of insiders at the beginning of a period is \(F(\theta) \). \(\tilde{F}(\theta) \) is the modified distribution after departures (for exogenous and endogenous reasons) took place. Vacancies are fulfilled to agents from the unemployment pool, with cumulative distribution function \(Q(\theta) \).

Stationarity condition writes:

\[(13) \quad \underbrace{\left(1 - \alpha + \alpha v\right)}_{\text{proportion of hired agents}} Q(u) + \underbrace{\alpha (1 - v)}_{\text{proportion of remaining insiders}} \tilde{F}(u) = F(u) \]
Where $\tilde{F}(u)$ is:

\begin{equation}
\tilde{F}(u) = \begin{cases}
\int_{\theta}^{u} (1 - (x - \theta)) f(\theta)d\theta & \text{if } u \in [\theta; x] \\
\frac{F(u) - v}{1 - v} & \text{if } u \in [x; \bar{\theta}]
\end{cases}
\end{equation}

Thus from (13) and (14) we obtain:

\begin{equation}
Q(u) = \begin{cases}
F(u)(1 - \alpha) + \alpha \int_{\theta}^{u} (x - \theta) f(\theta)d\theta & \text{if } u \in [\theta; x] \\
\frac{F(u)(1 - \alpha) + \alpha v}{1 - \alpha + \alpha v} & \text{if } u \in [x; \bar{\theta}]
\end{cases}
\end{equation}

8.3 Proof of Lemma 2

The case of $\theta \geq x$:

\[Q(\theta) - F(\theta) = \frac{(1 - \alpha)F(\theta) + \alpha v}{1 - \alpha + \alpha v} - F(\theta) = \frac{\alpha v(1 - F(\theta))}{1 - \alpha + \alpha v}\]

It is easy to see that

- $\frac{\alpha v(1 - F(\theta))}{1 - \alpha + \alpha v} > 0$, for any $\theta < \bar{\theta}$
- $\frac{\alpha v(1 - F(\theta))}{1 - \alpha + \alpha v} = 0$ for $\theta = \bar{\theta}$

The case of $\theta < x$:

\[Q(\theta) - F(\theta) = \frac{(1 - \alpha)F(\theta) + \alpha \int_{\theta}^{x} (x - u) f(u)du}{1 - \alpha + \alpha v} - F(\theta) = \frac{\alpha \int_{\theta}^{x} (x - u - v) f(u)du}{1 - \alpha + \alpha v}\]

$\int_{\theta}^{x} (x - u - v) f(u)du$ increases with θ when $\theta < x - v$ and decreases with θ when $\theta > x - v$. So if $\int_{\theta}^{x} (x - u - v) f(u)du \geq 0$ for $\theta = 0$ and $\theta = x$, it is also positive for any $\theta \in [\bar{\theta}, x]$.

- For $\theta = x_w$, $\int_{\theta}^{x_w} (x_w - u - v_w) f(u)du = (1 - F(x_w)) v_w > 0$.
- For $\theta = \bar{\theta}$, $\int_{\theta}^{x} (x_w - u - v_w) f(u)du = 0$.

29
8.4 Proof of Proposition 1

The condition $c \geq \frac{\alpha \delta m}{1 - \alpha \delta (1 - m)}$

It is obtained from constraint (9):

$$\frac{c(1 - \alpha \delta)}{(1 - c)\alpha \delta} - \int_{\bar{x}}^{\theta} \frac{(\theta - \bar{x})s(\theta)}{1 - S(\bar{x})} \, d\theta \leq 0$$

We assume that the initial distribution is such that the left hand side increases with \bar{x}. A sufficient condition for this is that the density function $s(\theta)$ and the reliability function $\int_{x}^{\bar{\theta}} (1 - S(\theta)) \, d\theta$ are log-concave. See Bagnoli and Bergstrom (2005) for a list of distributions that satisfy those conditions. Thus if the constraint is not satisfied for $\bar{x} = 0$ it will never be satisfied. This we obtain the following condition:

$$\frac{c(1 - \alpha \delta)}{(1 - c)\alpha \delta} - \int_{\bar{x}}^{\theta} \theta s(\theta) \, d\theta > 0 \iff c \geq \frac{\alpha \delta m}{1 - \alpha \delta (1 - m)}$$

The condition $c \geq \frac{\alpha \delta}{1 - \alpha \delta} \left(\bar{\theta} - m + \frac{\alpha \sigma^2}{1 - \alpha + \alpha(\bar{\theta} - m)}\right)$

Constraint (7) is:

$$\frac{c(1 - \alpha \delta)}{\alpha \delta} - Q(\bar{x})(\bar{x} - \int_{\bar{x}}^{\bar{\theta}} q(\theta) \, d\theta) - (1 - c)Q(\bar{x})\left(\frac{\int_{\bar{x}}^{\bar{\theta}} \theta q(\theta) \, d\theta}{1 - Q(\bar{x})} - \bar{x}\right) \leq 0$$

We are interested on the case, this constraint is not satisfied even in the most favorable situation.

First, the left hand side is decreasing in x. Thus for $\bar{x} = \bar{\theta}$ we have:

$$\frac{c(1 - \alpha \delta)}{\alpha \delta} - (1 - c) \frac{Q(\bar{x})}{1 - Q(\bar{x})} \int_{\bar{x}}^{\bar{\theta}} (1 - Q(\theta)) \, d\theta - \int_{\bar{x}}^{\bar{\theta}} (\bar{x} - \theta) q(\theta) \, d\theta \leq 0$$

The latter is the most easy to satisfy for $\bar{x} = \bar{\theta}$:

$$\frac{c(1 - \alpha \delta)}{\alpha \delta} - \int_{\bar{\theta}}^{\bar{\theta}} (\bar{\theta} - \theta) q(\theta) \, d\theta \leq 0 \iff \frac{c(1 - \alpha \delta)}{\alpha \delta} - \int_{\theta}^{\bar{\theta}} (\bar{\theta} - \theta) s(\theta)(1 - \alpha + \alpha(\bar{\theta} - \theta)) \, d\theta \leq 0$$

Finally we can show that the constraint is the easiest to satisfy for $U \rightarrow 0$. Thus
the constraint becomes:

\[
\frac{c(1 - \alpha\delta)}{\alpha\delta} - \int_{\bar{\theta}}^{\theta} \frac{(\bar{\theta} - \theta)s(\theta)(1 - \alpha + \alpha(\bar{\theta} - \theta))}{1 - \alpha + \alpha v} d\theta \leq 0
\]

where \(v = \int_{\theta}^{\bar{\theta}} (\bar{\theta} - \theta)s(\theta)d\theta = \bar{\theta} - m \) and \(\int_{\theta}^{\bar{\theta}} (\bar{\theta} - \theta)^2 s(\theta)d\theta = (\sigma^2 + (\bar{\theta} - m)^2) \).

We replace in \(\frac{c(1 - \alpha\delta)}{\alpha\delta} - \int_{\bar{\theta}}^{\theta} \frac{(\bar{\theta} - \theta)s(\theta)(1 - \alpha + \alpha(\bar{\theta} - \theta))}{1 - \alpha + \alpha v} d\theta \leq 0 \), which after transformation equals \(c \leq \frac{\alpha\delta}{1 - \alpha\delta} \left(\bar{\theta} - m + \frac{\alpha\sigma^2}{1 - \alpha + \alpha(\bar{\theta} - m)} \right) \).

So if \(c \geq \frac{\alpha\delta}{1 - \alpha\delta} \left(\bar{\theta} - m + \frac{\alpha\sigma^2}{1 - \alpha + \alpha(\bar{\theta} - m)} \right) \), the constraint (7) is never satisfied.

8.5 Proof that some performance standards are not self-enforceable

We show that the self-enforceability constraint for \(\bar{x} \) is satisfied for some values and that there exists some \(\tilde{x} \) above which performance standards are not credible.

We proceed in two steps:

- First we show that the constraint is binding for \(\bar{x} = \bar{\theta} \equiv 0 \) and not satisfied for \(\bar{x} = \theta \).
- Second we show that it is decreasing in \(\bar{x} \), for \(\bar{x} \to 0 \).

First step: The constraint is:

\[
B \equiv -\left(\bar{x} - \int_{0}^{\bar{\theta}} \frac{\theta f(\theta)}{F(\bar{x})} d\theta \right) + Q(\bar{x})\left(\bar{x} - \int_{0}^{\bar{\theta}} \frac{\theta q(\theta)}{Q(\bar{x})} d\theta \right) \leq 0
\]

- For \(\bar{x} = \bar{\theta} \), \(B = \int_{0}^{\bar{\theta}} \theta f(\theta) d\theta - \int_{0}^{\bar{\theta}} \theta q(\theta) d\theta \). Under Lemma 2 we have \(B > 0 \), the constraint is not satisfied.
- For \(\bar{x} = 0 \), \(B = 0 \)

Second step: We now show that \(B \) is decreasing in \(\bar{x} \), for \(\bar{x} \to 0 \).

Let us first assume that in the firm and on the labor market there is the same distribution \(F(\theta) \) (there is no specification on the distribution function \(F(\cdot) \)). In
this case the constraint writes:
\[
\tilde{B} \equiv -(x - \int_0^x \frac{\theta f(\theta)}{F(x)} d\theta) + F(x)(x - \int_0^x \frac{\theta f(\theta)}{F(x)} d\theta) \leq 0
\]

It is satisfied for any \(x \). For \(x = 0 \), \(\tilde{B} = 0 \). So the derivative of \(\tilde{B} \) with respect to \(x \), for \(x = 0 \) should be negative. We have
\[
\frac{\partial \tilde{B}}{\partial x} = -(1 - F(x)) + \frac{f(x)}{F(x)}(x - \int_0^x \frac{\theta f(\theta)}{F(x)} d\theta) \bigg|_{x=0} < 0
\]

Let us now turn to the case of different distributions, one on the market, and one inside the firm. After simplifications the derivative of the constraint writes:
\[
\frac{\partial B}{\partial x} = -\frac{Q(x)}{F(x)}\left(\frac{\partial v}{\partial x}F(x) - F(x)\right) + \frac{f(x)}{F(x)}(x - \int_0^x \frac{\theta f(\theta)}{F(x)} d\theta)
\]
\[
\frac{\partial v}{\partial x} = \int_0^x \frac{f(\theta)(1 - \alpha + \alpha v)}{(1 - \alpha + \alpha(x - \theta))} d\theta \geq \frac{F(x)(1 - \alpha + \alpha v)}{(1 - \alpha + \alpha x)} \quad \text{and from Lemma 2 we know that} \quad Q(x) \geq F(x).
\]

It follows that:
\[
\frac{\partial B}{\partial x} \leq -\frac{1 - \alpha + \alpha v}{1 - \alpha + \alpha x} F(x) + \frac{f(x)}{F(x)}(x - \int_0^x \frac{\theta f(\theta)}{F(x)} d\theta)
\]

For \(x \to 0 \) the latter expression converges to \(\frac{\partial \tilde{B}}{\partial x} \bigg|_{x=0} \) so we should have \(\frac{\partial B}{\partial x} \bigg|_{x=0} < 0 \).

8.6 Proof of Propositions 2 and 3

Before proceeding to the proof of the propositions, we derive the expressions of \(f(\theta) \) and \(q(\theta) \) as functions of the initial distribution of abilities \(s(\theta) \):

\[
f(\theta) = \begin{cases}
\frac{(1 - \alpha + \alpha v)s(\theta)}{(1 - \alpha + \alpha v) + U\alpha (x - \theta - v)} & \text{if} \; \theta \in [\bar{\theta}; x] \\
\frac{(1 - \alpha + \alpha v)s(\theta)}{(1 - \alpha + \alpha v) - U\alpha v} & \text{if} \; \theta \in [x; \bar{\theta}]
\end{cases}
\]

\[q(\theta) = \begin{cases}
\frac{(1 - \alpha + \alpha (x - \theta))s(\theta)}{(1 - \alpha + \alpha v) + U\alpha (x - \theta - v)} & \text{if} \; \theta \in [\bar{\theta}; x] \\
\frac{(1 - \alpha + \alpha v)s(\theta)}{(1 - \alpha + \alpha v) - U\alpha v} & \text{if} \; \theta \in [x; \bar{\theta}]
\end{cases}\]

Equations (3) and (12) are used.

Recall that \(v = \int_\theta^x F(\theta)d\theta \). It is immediate to see that \(v < x F(x) < x \).

Hereafter, we consider \(\bar{\theta} = 0 \).
8.6.1 Proof of Proposition 2

The self-enforceability constraint for termination contract is:

\[- \int_0^x (x - \theta) f(\theta) d\theta + \int_0^x (x - \theta) q(\theta) d\theta \leq 0\]

The derivative with respect to \(\alpha\) writes:

\[- \frac{1}{F(x)} \int_0^x (x - \theta) \frac{df(\theta)}{d\alpha} d\theta + \frac{v}{F(x)^2} \int_0^x \frac{df(\theta)}{d\alpha} d\theta + \int_0^x (x - \theta) \frac{dq(\theta)}{d\alpha} d\theta\]

We adopt the following notation:

\[A \equiv - \frac{1}{F(x)} \int_0^x (x - \theta) \frac{df(\theta)}{d\alpha} d\theta + \frac{v}{F(x)^2} \int_0^x \frac{df(\theta)}{d\alpha} d\theta\]

\[B \equiv \int_0^x (x - \theta) \frac{dq(\theta)}{d\alpha} d\theta\]

In what follows we show that each of these terms is positive.

Proof that \(B > 0\)

\[B = \int_0^x \frac{(1 - U)s(\theta)(x - \theta - v)(x - \theta)}{((1 - \alpha + \alpha v) + U\alpha(x - \theta - v))^2} d\theta - \frac{\partial v}{\partial \alpha} \int_0^x \frac{(1 - U)s(\theta)\alpha(1 - \alpha + \alpha(x - \theta))(x - \theta)}{((1 - \alpha + \alpha v) + U\alpha(x - \theta - v))^2} d\theta\]

- The first term rewrites as follows: \(\frac{(1 - U)}{1 - \alpha + \alpha v} \int_0^x \frac{f(\theta)(x - \theta - v)(x - \theta)}{((1 - \alpha + \alpha v) + U\alpha(x - \theta - v))} d\theta\)

We notice that for low (resp high) \(\theta\), \(f(\theta)(x - \theta - v)\) is positive (resp negative).

Since \(\frac{(x - \theta)}{((1 - \alpha + \alpha v) + U\alpha(x - \theta - v))}\) is decreasing in \(\theta\) the positive terms are highly weighted. Thus if the expression is positive when all the terms are equally weighted, it will also be positive in the case of highly weighted positive terms. With equally weighted terms we have

\[\frac{(1 - U)k}{1 - \alpha + \alpha v} \int_0^x f(\theta)(x - \theta - v) d\theta = \frac{(1 - U)k}{1 - \alpha + \alpha v} v(1 - F(x)) > 0\]
Proof of

where \(k \) is a constant. So

\[
\frac{(1-U)}{1-\alpha+\alpha v} \int_0^x \frac{f(\theta)(x-\theta-v)(x-\theta)}{((1-\alpha+\alpha v) + U\alpha(x-\theta-v))} d\theta > 0
\]

• Now we show that \(\frac{\partial v}{\partial \alpha} < 0. \)

\[
\frac{\partial v}{\partial \alpha} \gamma = - \int_0^x \frac{U(x-\theta)s(\theta)(x-\theta-v)}{((1-\alpha+\alpha v) + U\alpha(x-\theta-v))^2} d\theta < 0
\]

where \(\gamma = \frac{(1-\alpha)}{1-\alpha+\alpha v} + \int_0^x \frac{(x-\theta)s(\theta)\alpha(1-U)(1-\alpha+\alpha v)}{((1-\alpha+\alpha v) + U\alpha(x-\theta-v))^2} d\theta > 0. \)

To show that \(- \int_0^x \frac{U(x-\theta)s(\theta)(x-\theta-v)}{((1-\alpha+\alpha v) + U\alpha(x-\theta-v))^2} d\theta < 0 \) we apply the same kind of argument as above.

Thus we have \(B > 0. \)

Proof that \(A > 0 \)

\[
A = \frac{1}{F(x)^2} \int_0^x \frac{\partial f(\theta)}{\partial \alpha} ((x-\theta)F(x) - v) d\theta = \frac{1}{F(x)^2} \frac{\partial v}{\partial \alpha} \int_0^x \frac{\partial f(\theta)}{\partial v} ((x-\theta)(F(x) - v)) d\theta
\]

• Proof of \(a > 0 \)

\[
a = \frac{1}{F(x)^2} \int_0^x \frac{U s(\theta)(x-\theta-v)((x-\theta)F(x) - v)}{((1-\alpha+\alpha v) + U\alpha(x-\theta-v))^2} d\theta = \frac{1}{F(x)^2}(1-\alpha+\alpha v) \int_0^x \frac{U f(\theta)(x-\theta-v)((x-\theta)F(x) - v)}{((1-\alpha+\alpha v) + U\alpha(x-\theta-v))^2} d\theta \geq \frac{F(x)^2}{U(1-\alpha+\alpha v)} \int_0^x \frac{f(\theta)(x-\theta-v)((x-\theta)F(x) - v)}{((1-\alpha+\alpha v) + U\alpha(x-\theta-v))^2} d\theta
\]

In the last expression the positive terms are highly weighted. So it is sufficient to show that the expression is non negative when all terms are equally weighted:

\[
\int_0^x f(\theta)(F(x)(x-\theta) - v)d\theta = vF(x)F(x-v) + F(x)(v - \int_0^x F(\theta)d\theta) - vF(x-v) \geq vF(x)F(x-v) + F(x)(v - F(x)v) - vF(x-v) = v(1-F(x))(F(x) - F(x-v)) > 0 \Rightarrow a > 0.
\]

• Proof of \(b > 0 \)

\[
b = -\frac{U\alpha}{F(x)^2(1-\alpha+\alpha v)} \frac{\partial v}{\partial \alpha} \int_0^x \frac{f(\theta)(1-\alpha+\alpha(x-\theta))(F(x)(x-\theta) - v)}{(1-\alpha+\alpha v) + U\alpha(x-\theta-v)} d\theta
\]

34
As we have already shown \(\frac{\partial v}{\partial \alpha} < 0 \), so the sign of \(b \) is given by the expression

\[
\int_0^\bar{x} \frac{f(\theta)(1 - \alpha + \alpha(x - \theta))(F(x)(x - \theta) - v)}{(1 - \alpha + \alpha v) + U\alpha(x - \theta - v)} d\theta \geq k \int_0^\bar{x} f(\theta)(F(x)(x - \theta) - v) d\theta = 0
\]

\(\Rightarrow b > 0 \)

8.6.2 Proof of Proposition 3

The constraint writes:

\[
\int_0^{\bar{x}} (x - \theta) f(\theta) d\theta - \int_0^{\bar{x}} (x - \theta) q(\theta) d\theta + (1 - b) \int_{\bar{x}}^\theta (1 - Q(\theta)) d\theta \leq 0
\]

The derivative with respect to \(\alpha \) is:

\[
\frac{1}{F(\bar{x})^2} \left(\int_0^{\bar{x}} (x - \theta) F(\bar{x}) \frac{df(\theta)}{d\alpha} d\theta - v \int_0^{\bar{x}} df(\theta) d\theta \right) - \int_0^{\bar{x}} (x - \theta) \frac{dq(\theta)}{d\alpha} d\theta - (1 - b) \int_{\bar{x}}^\theta \frac{dQ(\theta)}{d\alpha} d\theta = J + L + H
\]

The sign of \(L \). \(L = -B < 0 \).

The sign of \(H \).

\[
H = -(1 - b) \left(\int_{\bar{x}}^\theta \frac{(1 - U)(1 - S(\theta))v}{(1 - \alpha + \alpha v - U\alpha v)^2} \frac{df(\theta)}{d\alpha} d\theta - \frac{\partial v}{\partial \alpha} \int_{\bar{x}}^\theta \frac{(1 - U)(1 - S(\theta))\alpha(1 - \alpha)}{(1 - \alpha + \alpha v - U\alpha v)^2} d\theta \right)
\]

We have already shown that \(\frac{\partial v}{\partial \alpha} < 0 \), so \(H < 0 \).

The sign of \(J \). We can rewrite the expression as follows:

\[
J = \frac{1}{F(\bar{x})^2} \left(\int_0^{\bar{x}} ((x - \theta) F(\bar{x}) - v) \frac{df(\theta)}{d\alpha} d\theta - v \int_0^{\bar{x}} df(\theta) d\theta \right)
\]

Note that \(\int_0^{\bar{x}} ((x - \theta) F(\bar{x}) - v) \frac{df(\theta)}{d\alpha} d\theta \), is similar to \(-A \), thus by applying the same kind of analysis we can show that it is negative. The last term:

\[
- \int_{\bar{x}}^{\bar{x}} \frac{Us(\theta)v^2}{(1 - \alpha + \alpha v - U\alpha v)^2} d\theta - \frac{\partial v}{\partial \alpha} \int_{\bar{x}}^{\bar{x}} \frac{Us(\theta)(1 - \alpha)\alpha v}{(1 - \alpha + \alpha v - U\alpha v)^2} d\theta = - \int_{\bar{x}}^{\bar{x}} \frac{Us(\theta)v}{(1 - \alpha + \alpha v - U\alpha v)^2} d\theta \left(v + \frac{\partial v}{\partial \alpha}(1 - \alpha) \right)
\]
We show that \(v + \frac{\partial v}{\partial \alpha} \alpha(1 - \alpha) \) is positif. Indeed:

\[
\left(v + \frac{\partial v}{\partial \alpha} \alpha(1 - \alpha) \right) \geq \int_0^x (x - \theta)f(\theta)d\theta - \int_0^x \frac{(x - \theta)f(\theta)U\alpha(x - \theta - v)}{(1 - \alpha + \alpha v)} + U\alpha(x - \theta - v)d\theta > 0.
\]

So \(J < 0 \).

The left hand side of the constraint decreases with \(\alpha \).

8.7 Characteristics of the equilibrium contract

An agent who fails to perform a task \(x > \bar{x} \) keeps his occupation. Let us assume that the principal proposes a contract with efficiency wage and bonus, and that he announces that agents who fail to perform a task \(x \in [\bar{x}, \bar{x} + \Delta] \), will be fired. In this case the inter-temporal expected utility of an agent \(\theta < \bar{x} \) writes:

\[
V(\theta) = w - \theta c + \delta (1 - \alpha)V_U(\theta) + \delta \alpha [(1 - x - \Delta + \theta)V(\theta) + (x + \Delta - \theta)V_U(\theta)]
\]

The introduction of the bonus and the threat for an agent to be fired if not performing tasks larger than \(\bar{x} \), reduces the inter-temporal utility of any employee with \(\theta < \bar{x} \). Thus the incentive compatible wage for problems \(x \leq \bar{x} \) should be:

\[
w = c(x + \Delta) + \frac{c(1 - \alpha \delta)}{\alpha \delta} + (1 - \delta)V_U
\]

We notice that if the principal increases the efficiency wage by \(\Delta \), then the payment of the bonus duplicates\(^{26}\) the incentives and is not optimal.

\(^{26}\)Recall that any, task independently of its difficulty, provides the same profit to the principal if solved.